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It is shown that, for the case of two different particles associated with two dif- 
ferent Planck constants, an appropriate generalized center-of-mass transforma- 
tion allows one to retain the relevant constants of the motion. Therefore, some 
of the problems arising from the (postulated or experimentally determined) 
existence of several quantization constants appear to be avoidable. 

Although it is known that it cannot be logically excluded that Planck's 
constant h=21rh  is not a unique universal one (Wichmann, 1971), not 
much attention has been paid to this fact owing to the remarkable agree- 
ment between theory and experiment reached in quantum physics. In an 
interesting paper, however, Fischbach et  al. (1991), after recalling how the 
existence of several quantization constants leads to an apparent violation 
of space-time symmetry laws, suggest a possible test of the uniqueness of 
Planck's constant. It appears therefore worthwhile to explore more closely 
some of the consequences of the existence of several quantization constants. 

In the present paper it shall be shown that the introduction of more 
than one quantization constant, although in principle possible, is not only 
unnecessary and avoidable, but also undesirable. If, however, owing to the 
experimental findings along the lines suggested by Fischbach and 
co-workers the introduction of multiple Planck constants cannot be 
avoided, the considerations below show how to avoid some of the 
problems thereby arising. 

To start with, let us recall how Planck's constant is formally intro- 
duced in quantum theory. By assuming the validity of the usual space-time 
symmetries and making use of Wigner's and Stone's theorems (Jordan, 
1969), the operators that perform translations in time, translations in space 
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(along the x direction, say), and rotations in space (around the z axis, say) 
are, respectively, the unitary operators U(t), Tx(e), and Rz(~p) given by 

U(t) = exp( -- itH/h) 

Tx(~) = exp( -- iePx/h) 

Rz(~p) = exp( - iq~Jz/h) 

( la)  

( lb)  

(lc) 

In the first of equations (1), the generator H is time independent, for 
otherwise even the semigroup propriety of the one-parameter set of unitary 
operators U(t) would not be satisfied. Therefore, when the Schr6dinger 
equation is deduced from the unitary dynamical group the Hamiltonian H 
is necessarily time independent and the uniformity of time guarantees the 
conservation of the dynamical variable (to which we agree to give the name 
of energy) associated with the Hermitian operator H. In equations ( lb)  and 
(lc), the Hermitian operators Px and Jz are the generators of the unitary 
transformations performed by Tx(e) and Rz(~o), and are defined to be the 
linear momentum x component and the angular momentum z component. 
If space is homogeneous and isotropic, these quantities are conserved. In 
order to make the exponents dimensionless, there appears in equations (1) 
a constant with dimensions of an action, whose numerical value has to be 
determined from experiments: Planck's constant. 

In principle, nothing prevents one from choosing to introduce more 
than one quantization constant: one for the energy, up to three for the 
linear momentum, and up to three for the angular momentum. To make 
things simpler, let us assume that there is only one quantization constant 
for the three directions of translation and only one for the three rotation 
axes. Equations (1) are then rewritten as 

U(t) = exp( - itH/h') 

Tx(e ) = exp( - iaPx/h") 

Rz(q~) = exp( - icpJz/h") 

(2a) 

(2b) 

(2c) 

Let us see what sorts of consequences would follow from such a choice. 
First, notice that, since it will appear in the equation of the dynamical 
evolution, h' can be chosen as the reference Planck's constant, and there- 
fore we shall set h ' - h .  From the fact that rotations in ordinary three- 
dimensional space do not commute, in general, with each other, it can be 
shown that, if 7 and 7' are infinitesimal rotation angles, then (see, e.g., 
Battaglia and George, 1990), 

Ry(-y')  R~(y) Ry(7' ) Rx(-~) : Rz(7'~) (3) 
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Equations (2c) and (3) give the commutation relations among the angular 
momentum components (~jkq is the Levi-Civita symbol) 

[Ji, Jk] = ih"ejkqJq (4) 

which, when applied to the orbital angular momentum, give 

[Xj, e~] = ih'",3j~ (5) 

Note the appearance in equation (5) of the angular momentum quantiza- 
tion constant. From equations (2b) and (5) one has 

and from this 
operator X, 

one obtains 

[X, Tx(e)] = T:~(e)eh"/h" (6) 

and from the eigenvalue equation for the position 

X l x ) = x J x >  (7) 

XTx(~ ) Ix} = (x + eh"/h") Tx(a) Ix > (8) 

In the coordinate representation, and with an appropriate choice of the 
relative phase among the different eigenvectors of the position operator X, 
equation (8) is equivalent to 

Tx(~) O(x) = O ( x -  ~h"/h") (9) 

We see that a necessary condition for space to be homogeneous is that 
h"= h'". In general, the assumption on the validity of the space-time sym- 
metry properties (an assumption that allows us to make use of Wigner's 
theorem and to derive the time-evolution equation for quantum states) is 
consistent with (if not implies) the choice of a unique quantization constant 
[see, however, the interesting new insights provided by Jordan (1992)]. 
In order to preserve the validity of the homogeneity of space, one could 
redefine the notions of energy, linear momentum, and angular momentum, 
as given in equations (2), by means of the replacements 

Px ~ h"Px/h and Jz --* t i"Jjh (10) 

thereby obtaining the familiar equations (1). 
In the case in which different quantization constants are associated 

with different particles, one would again lose, and this time unavoidably, 
the validity of space-time invariance laws. If the particles 1 and 2, whose 
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position and momentum coordinates are (ra, Pl) and (r2, P2), respectively, 
interact via a potential V depending only on the separation between 1 and 
2, the Hamiltonian is 

p2 _2 
n : 2~1 -[- 2--~--~ -{- V(F 1 - r2) ( 1 1 )  

By performing a center-of-mass transformation, 

r ~ r  1 - - r  2 (12a) 

P # (12b) P = - - P l - - - - P 2  
ml m2 

R = m l  r I "+- ~ r2 (12c) 
M 

P = Pl + P2 (12d) 

M = m  I + m  2 (13a) 

mlm2 
- (13b) 

M 

we find that the above Hamiltonian becomes 

with 

H = H R  + H  r (14a) 

p2 p2 
HR=~-- ~ and Hr = ~-~ + V(r) (14b) 

thereby allowing the well-known Separation of the equations of the motion. 
Equations (11)-(14) hold in classical as well as in quantum mechanics, 
provided the dynamical variables of classical mechanics are promoted 
to operators obeying a suitable algebra. The quantization prescription 
requires that we replace the classical Poisson brackets among the canonical 
conjugate pairs of the position and linear momentum Cartesian coor- 
dinates by the commutators (divided by ih) among the corresponding 
linear operators. If one allows for the existence of more than one quantiza- 
tion constant, the canonical commutation relations for the two-particle 
system considered above are ( j =  1, 2, 3) 

[ x v ,  Pu]  = ihl 

[X2j, PZj] = ih2 

any other commutator = 0 

(15a) 

(15b) 

(15c) 
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By combining equations (12) and (15), one obtains the commutation 
relations among the center-of-mass coordinates. In particular, one obtains 

[xj ,  Pk]  = i(h~ -- h2) 6j~ (!6) 

which, together with equations (14), gives 

[P, H] = [P, V(r)] r 0 (17) 

thereby showing that the total linear momentum P is not a constant of the 
motion: Space appears not to be homogeneous. 

In the case in which the potential V depends only on the distance 
between the two particles, the commutation relations between H and the 
angular momentum 

L = r x p  (18) 

are 

[Lq, HI P v P 2 k  . . . . .  = ~qjk ~ ttrll --  n2)  5/= 0 (19) 

thereby showing that the angular momentum L is not a constant of the 
motion: Space appears not to be isotropic. 

The question therefore arises of whether the problem of the two real 
interacting particles can be replaced by a problem of two fictitious nonin- 
teracting particles to which a unique Planck's constant can be ascribed, the 
reference Planck's constant which appears in the time-evolution operator. 
As we shall see below, the answer to the above question turns out to be 
positive. In what follows it will be shown that, by defining an appropriate 
center-of-mass transformation (which shall be called a generalized center- 
of-mass transformation), one can avoid the difficulties mentioned above. 
Let us, in fact, define the following generalized center-of-mass trans- 
formation: 

r = r l - r 2  (20a) 

hlff h2# 
P = ~ m  l P l - -  ~ m  2 P2 (20b) 

R = ~ \ m ~  j r,+h2\m,M j r 2 (20c) 
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P =~-  kmlm2/ \mlm-----~2 / P2 (20d) 

(21a) M---  m l  + m 2 

h2m l m2 

It - (h~rnl + h~rn2) (21b) 

It is simple matter to see that the Hamiltonian, in terms of the new set of 
position and momentum coordinates associated with the fictitious particles 
of mass M and #, is still given by equations (14). Moreover, the separation 
between the center-of-mass and relative coordinates, which, under the 
algebra specified by equations (15), would not be possible if one performed 
the transformation defined in equations (12) and (13), is feasible if the 
generalized center-of-mass transformation were applied, since one would 
indeed have 

[ H  R, Hr]  = 0 (22) 

In fact, in the presence of two different quantization constants, the usual 
center-of-mass transformation would give 

[ H  R, Hr] r 0 (23) 

and the two-body problem could not be reduced to a one-body one. 
Furthermore, the commutation relations among the new coordinates 
defined by the generalized center-of-mass transformations are 

[xj, Pk] = [ Rj, Pk] = ih6sk (24a) 

any other commutator = 0 (24b) 

In particular, 

and 

[xj, Pk] = 0 (25) 

[P, H]  = [L, H]  = 0 (26) 

i.e., the quantities P and L defined through equations (20) are now 
conserved. 

In conclusion, until an experimental decision is made, one could logi- 
cally introduce multiple Planck's constants and imagine constructing a 
physical theory in which different outcomes of two experiments are 
ascribed to space-time asymmetries rather than to different conditions 
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intrinsic to the system on  which the experiments are performed. However, 
Fischbach and co-workers proposed a valuable approach to deciding 
experimentally whether Planck's constant is unique or not. If it turns out.  
not to be unique, the usual formulation of quantum mechanics would have 
to be modified. For  instance, as it has been shown here, it is not p~ + P2, 
given by 

hi --h2 h2ml + him2 
Pl + P 2 =  h P + [ M ( h g m l + h g m 2 ) ]  1/2P ~ i (27) 

but P, defined in equation (20d), that is the conserved quantity. 
Remarkably, making use of the same generalized center-of-mass transfor- 
mation, similar considerations can be made for the angular momentum. 
The modifications, as we see, might involve a profound revision of concepts 
and in a manner not yet fully explored (although some suggestions have 
been proposed by Fischbach and co-workers). However, the difficulties 
raised for the two-particle case regarding the loss of the usual conserved 
quantities can be avoided, as has been shown here, by means of the intro- 
duction of the generalized center-of-mass transformation. The transforma- 
tions (20) and (21) are such that (1) with the phase-space coordinates of 
the system are associated operators obeying the usual canonical commuta- 
tion relations, and (2) one can maintain the existence of conserved quan- 
tities that, even though they do not have classical analogs, can be 
profitably used in studying the time evolution of the system. 
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